
SOW Overview

Revision: 1.1.1.1

Mark J. Olesen

Date: 2004/12/22 01:35:40

Abstract

SOW is an experimental project, which is loosely derived from the
YAPIHO project concept. It’s purpose is to simplify the process of em-
bedding HTML code within a CGI program such as PHP. As an example,
consider a novice HTML programmer such as a family member who reg-
ularly maintains simple HTML pages. However, they now desire to have
dynamic pages, and they do not wish to use or learn PHP, XML, etc.
So, as a favor, you decide to take on the project in PHP. Later, they use
their favorite editor and are either unable to modify the HTML because
it’s now in some CGI language such as PHP. To complicate matters, the
HTML was broken up into chunks such as headers, body, footers, and the
parts reassembled in the script. By implementing the pages in CGI, you
have made them dependent upon you or other experienced developers to
maintain their site.

SOW attempts to resolve these simple issues by allowing the developer
to separate CGI code and HTML. The way it works is similar to the
way a mail-merge program works–embedded fields within a document are
translated and filled in with dynamic values.

Copyright

This document is licensed under the GNU Free Documentation License.

Copyright c©2004 Report Writing Services, INC. and contributors.
Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

The author(s) does not assume responsibility for errors or omissions, or for
damage resulting from the use of the information contained herein. Use of the
software programs described herein and this documentation is subject to their
respective License Agreement.

Trademarks: Brand names and products names included herein are trade-
marks, registered trademarks, or trade names of their respective holders.

1

SOW Overview 2

1 Revision History

$
$Log: overview.tex,v $
Revision 1.1.1.1 2004/12/22 01:35:40 markjolesen
initial import.

$

2 Contact

SOW project is proudly hosted on SourceForge.NET. The project site can be
found at URL http://sow2.sourceforge.net and the project page at http://sourceforge.net/projects/sow2/.

Report Writing Services, INC. can be located at URL http://ReportWritingServices.com.

3 Audience

SOW and it’s accompanying documentation is intended for it’s community of
users, which are mainly developers.

4 Introduction

SOW is an experimental project, which means that it is not suitable for use in
commercial products or products that depend upon reliability. It is likely to
change often and is entirely driven on it’s community of users and developers.

Creating simple HTML based web pages has become a fairly easy task. It
is not uncommon for the hobbyist of any age to create a web site comprised
entirely of HTML based web pages. However, creating dynamic web pages
introduces certain complexities–it requires knowledge of a language capable of
running under the Common Gateway Interface (CGI).

The purpose of SOW is to separate embedded HTML code within the script-
ing language. It accomplishes this by using the concepts of mail-merge pro-
grams. To be certain, SOW is not a language and it is not an XML replacement.
There are other viable and efficient ways to produce dynamic HTML code.

5 Overview

SOW is nothing more than a library of routines. It is intended to be simple yet
powerful. Let SOW handle the details, and let the scripting language control
the flow. SOW should be able to handle any type and size of data limited only
by the amount of system resources.

A SOW document is comprised of sections and fields, which is described in
the sections below.

5.1 Sections

A section is embedded within HTML comments such as

Report Writing Services, INC.

SOW Overview 3

〈!– @@ .section(mysection) @@ –〉

The start of a document until the first named section is given a default
section name ”START.” Section names, must be unique. Since ”START” is
already taken, it may not be used. A section continues until another section is
encountered (see diagram below). There is no imposed limit on the number of
sections that can be used. Section names may only contain alphanumeric ASCII
characters and underscores.

/- <head>
START | <body>

|
\-
/- <!--@@ .section(mysection) @@ -->

MYSECTION | ...
\-

5.2 Fields

Fields are place holders for dynamic values. They may appear anywhere within
a section. However, fields defined in an HTML comment defining a section are
currently ignored. Fields are surrounded by double hash/pound symbols (e.g.
##myfield##). Field names may only contain alphanumeric ASCII characters
and underscores.

6 Miscellaneous

Section and field names are limited to 64 characters in length. They must be in
ASCII and only contain alphanumeric characters and underscores. Section and
field names are case-insensitive, and must not be duplicated (unless specified in
the same comment block).

The first section in an HTML comment block is the one used. Any remaining
will be ignored. For example, in the comment block

〈!– @@.section(mysection)@@ @@.section(mysection2)@@ –〉

“mysection2” will be ignored.
The parser tries to be forgiving and flexible. Typically, white-space is not a

problem. For example, the comment block

〈!– start of section @@ . section (mysection) @@ –〉

would not produce any problems.
An important remark is to keep in mind that SOW does not format any

information.

7 Issues

HTML editors can cause embedding issues. This is especially true for tags that
do not require quotes. For example, the “option” tag

Report Writing Services, INC.

SOW Overview 4

〈option value=“##value##” ##selected##〉##text##〈/option〉

may contain an unquoted “selected” attribute. An editor such as Mozilla
Composer may reformat the tag such as

〈option value=“##value##” ##selected##=“”〉##text##〈/option〉

A resolution would be to use a single field for the entire option block (e.g.
##option##). The disadvantage would be that the user would not see the
selection box in an editor.

A PHP Examples

A.1 Text

A.1.1 message.txt

Following is an example of an ASCII text file named message.txt.

##header##

##date##

Dear ##salute##

Your account ##account## is past due by ##past_due_days##.
To avoid further harassment, pay the full amount
of ##amount_due## now dammit!

A.1.2 message.php

Following is an example PHP script that uses SOW to read in the message.txt
template and fill in the fields.

<?php
/* message.php example */
/* read, fill and output message.txt */

include ’dl_local.php’;

dl_local("phpsowDL.so");

$ar= array();
$ar[’header’]= "Cruel Collection agency\nYou owe us, pay now!\n";
$ar[’date’]= ’December 01, 1938’;
$ar[’salute’]= ’Mr. Right’;
$ar[’account’]= ’01010101’;
$ar[’past_due_days’]= ’many many years’;
$ar[’amount_due’]= ’$0.01’;

$env= new_env();

Report Writing Services, INC.

SOW Overview 5

update_env($env,$ar);

$sow = new_sow(’message.txt’);
stroke_sow($sow, $env);
reap_sow($sow);
?>

A.1.3 Output

Following is the output SOW produces.

Cruel Collection agency
You owe us, pay now!

December 01, 1938

Dear Mr. Right

Your account 01010101 is past due by many many years.
To avoid further harassment, pay the full amount
of $0.01 now dammit!

To give the example a little more utility, you can extract the contents of the
document into a string, and then use the PHP mail() routine to E-mail it to
someone.

...
// reap_sow($sow); do not send to standard out

// read contents of document
$str= duplicate_buffer_sow($sow);

// use mail to send it off
mail(...);

A.2 HTML

A.2.1 sample.htm

Following is an example of an HTML file named sample.htm.

<html>
<head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>SAMPLE.HTM</title>
</head>
<body>
This is a simple SOW HTML example that fills in option values.

Select a state:
<select name="states">
<!-- @@.section(options1)@@ -->

Report Writing Services, INC.

SOW Overview 6

<option value="##value##" ##selected##>##text##</option>
<!-- @@.section(rest)@@ -->
</select>
Remainder...
__oOo__
</body>
</html>

A.2.2 sample.php

Following is an example PHP script that uses SOW to read in the sample.htm
template and fill in the fields.

<?php
/* sample.php */
/* read, fill in and output sample.php */

include ’dl_local.php’;

dl_local("phpsowDL.so");

$env= new_env();
$sow = new_sow(’sample.htm’);

// stroke start section
cur_stroke_sow($sow, $env);

// advance cursor to next section "option"
cur_next_sow($sow);

$st= array();
$st[]= "NY";
$st[]= "TX";
$st[]= "CA";
$st[]= "FL";

$ar= array();

foreach ($st as $key=>$v){
$ar[’value’]= "$key";
$ar[’selected’]= ($key) ? "" : "selected";
$ar[’text’]= "$v";
update_env($env, $ar);
cur_stroke_sow($sow, $env);
}

// advance cursor to next section "rest"
// (prevent stroke of current section in butt)
cur_next_sow($sow);

Report Writing Services, INC.

SOW Overview 7

// auto-stroke through remaining sections
cur_butt_sow($sow, $env);

// output document
reap_sow($sow);
?>

A.2.3 Output

<html>
<head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>SAMPLE.HTM</title>
</head>
<body>
This is a simple SOW HTML example that fills in option values.

Select a State:
<select name="states">

<option value="0" selected>NY</option>

<option value="1" ="">TX</option>

<option value="2" ="">CA</option>

<option value="3" ="">FL</option>

</select>
Remainder...
__oOo__
</body>
</html>

B dl local

<?php
// stolen from from php.net messages
// endofyourself@yahoo.com 18-Oct-2003 04:12
function dl_local($extensionFile) {

//make sure that we are ABLE to load libraries
if(!(bool)ini_get("enable_dl") || (bool)ini_get("safe_mode")) {
die("dh_local(): Loading extensions is not permitted.\n");

}

//check to make sure the file exists
if(!file_exists($extensionFile)) {
die("dl_local(): File ’$extensionFile’ does not exist.\n");

}

Report Writing Services, INC.

SOW Overview 8

//check the file permissions
if(!is_executable($extensionFile)) {
die("dl_local(): File ’$extensionFile’ is not executable.\n");

}

//we figure out the path
$currentDir = getcwd() . "/";
$currentExtPath = ini_get("extension_dir");
$subDirs = preg_match_all("/\//" , $currentExtPath , $matches);
unset($matches);

//lets make sure we extracted a valid extension path
if(!(bool)$subDirs) {
die("dl_local(): Could not determine a valid extension path [extension_dir].\n");

}

$extPathLastChar = strlen($currentExtPath) - 1;

if($extPathLastChar == strrpos($currentExtPath , "/")) {
$subDirs--;

}

$backDirStr = "";
for($i = 1; $i <= $subDirs; $i++) {
$backDirStr .= "..";
if($i != $subDirs) {
$backDirStr .= "/";

}
}

//construct the final path to load
$finalExtPath = $backDirStr . $currentDir . $extensionFile;

//now we execute dl() to actually load the module
if(!dl($finalExtPath)) {
die();

}

//if the module was loaded correctly, we must bow grab the module name
$loadedExtensions = get_loaded_extensions();
$thisExtName = $loadedExtensions[sizeof($loadedExtensions) - 1];

//lastly, we return the extension name
return $thisExtName;

}//end dl_local()
?>

Report Writing Services, INC.

