
SOW PHP API Quick Tutorial

Revision:

Mark J. Olesen

Date:

Copyright

This document is licensed under the GNU Free Documentation License.

Copyright c©2005 Mark J. Olesen and contributors.
Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

The author(s) does not assume responsibility for errors or omissions, or for
damage resulting from the use of the information contained herein. Use of the
software programs described herein and this documentation is subject to their
respective License Agreement.

Trademarks: Brand names and products names included herein are trade-
marks, registered trademarks, or trade names of their respective holders.

1 Introduction

This document provides a quick tutorial to the SOW PHP API. The document
should be used along with the overview, which contains some of the source
explained in further detail here. This document briefly discusses templates,
environments and stroking.

2 Template

A SOW Template is a document that contains SOW embedded characters. Tem-
plates may optionally contain sectioning commands to further divide the doc-
ument into sections. All SOW documents contain an initial section named
“START.”

1

Quick Tutorial 2

2.1 Syntax

Fields are surrounded by double hash/pound symbols (e.g. ##myfield##).
Field names may only contain alphanumeric ASCII characters and underscores.

2.2 Example

Following is an example ASCII text document that contains SOW embedded
characters.

##header##

##date##

Dear ##salute##

Your account ##account## is past due by ##past_due_days##.
To avoid further harassment, pay the full amount
of ##amount_due## now dammit!

Following are the fields SOW will recognize.

• header

• data

• salute

• account

• past due days

• amount due

3 Environment

SOW gets substitution data through an environment. An environment consists
of key/value pairs. A key directly corresponds to a field within a section. Fields
within a document are place holders for data. When SOW encounters a field,
it will attempt to retrieve it’s associated value through the environment. That
value will be used to replace the field. If a corresponding field can not be found,
nothing will be output.

3.1 new env

In PHP, an environment is first created with the new env routine.

3.1.1 Syntax

int new env([int symbols])

The optional symbols parameter, takes a positive integer, which indicates
the number of symbols SOW should reserve for the environment.

Mark J. Olesen

Quick Tutorial 3

3.1.2 Example

$env= new_env();

3.2 update env

The easiest way to add data to an environment is to construct and populate an
associative array and use the update env routine.

3.2.1 Syntax

int update env(resource env, array tuples|[string value, string key])

3.2.2 Example

Following is an example of an associative array, which contains the fields from
the Template defined earlier.

$ar= array();
$ar[’header’]= ‘‘Cruel Collection agency\nYou owe us, pay now!\n’’;
$ar[’date’]= ’December 01, 1938’;
$ar[’salute’]= ’Mr. Right’;
$ar[’account’]= ’01010101’;
$ar[’past_due_days’]= ’many many years’;
$ar[’amount_due’]= ’$0.01’;
update_env($env, $ar);

4 new sow

new sow creates a resource that can be used within the SOW API to control
the construction of a document.

4.0.3 Syntax

int new sow(string template)

4.0.4 Example

For our example we will assume our template was named “message.txt.”

$sow= new_sow(’message.txt’);

5 stroke sow

SOW relies on the developer to control the flow of input and output to construct
a final document. This is accomplished through templates, environments and
stroking.

Stroking combines a section and environment to form output that is com-
mitted to an internal data buffer, which constitutes the running document.

Mark J. Olesen

Quick Tutorial 4

"START" $env
: :
: :
+---:---+

:
:

[BUFFER]

5.0.5 Syntax

A method to commit data to the internal data buffer is to use stroke sow.

int stroke sow(resource sow, resource env[, string section])

5.0.6 Example

Since our template contains only one section, we will omit the section using the
default ”START.”

stroke_sow($sow, $env);

6 reap sow

A document does not do much good unless it can be output. reap sow outputs
the internal data buffer to standard out.

6.0.7 Syntax

int reap sow(resource sow)

6.0.8 Example

reap_sow($sow);

7 Conclusion

Hopefully the quick guide provided some insight into the benefits of SOW. Since
SOW is in it’s infancy there is not much documentation. So, the best place to
turn for further information is the sources and it’s community of users.

The SOW team welcomes your comments and contributions. The success of
open source relies on it’s community of users. So, please check out the SOW
team and get involved.

SOW is proudly hosted on Sourceforge.net. It can be found at http://sow2.sourceforge.net.

Mark J. Olesen

